

UPS Solidswitch 1400

User Guide

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 1 of 42

EDS-SSUSRGD-121319A

Acknowledgments

The product described in this manual, is a licensed product of BTU Research LLC. All other products or trademarks are property of their respective owners.

Copyright 2019 Rev r3a

BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 2 of 42

Table of Contents

Introduction	6
Features	7
Switch Feature Details	8
WEB INTERFACE	
Default Access Credentials	10
Web Interface Color Scheme	10
Web Server SSL / TLS Certificates	10
UPS Command Post	
Port status	11
Power Status	11
Battery Status	11
Configuration Management	
Configuration Management Conventions	13
Configuration Actions	
Export / Import by HTTP	13
System Actions	14
System Configuration	15
System Access Credentials	15
System Network Configuration	15
System General Settings	16
Time and Date	16
Web Interface Color Scheme	17
Web Interface Idle Timeout	17
Log System Load Interval	
Switch Configuration	17
Switch Global	17
Switch Ports	18
Switch VLAN	19
System Services	21
PoE Shutdown	21
PoE Schedule	22
Recurring Rules	22
One-Shot Rules	22
Terminal Server	23

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 3 of 42

MQTT Service	23
SNMP Service	25
NTP Service	26
HTTP Service	26
Rsyslog Service	27
Authentication Extensions	27
RADIUS Service	27
TACACS Service	28
LLDP Service	28
Connection Monitor Service	30
Network Ports	31
Spanning Tree Protocol	31
Dynamic Address Lookup Table	31
Port Mirroring	32
PING Utility	32
Diagnostics	32
Event Buffer	34
Software Updates	34
SSH Command Line Interface	35
SSH Authentication	35
SSH Public Key Generation	
Configuration Output	
Configuration Input	36
Configuration Management	36
Configuration Export / Import	37
Configuration Export	37
Configuration Import	37
System Software Upgrade	
SSH Command Shell continued	39
tftp-config put	39
tftp-config get	39
tftp-upgrade	39
telemetry	39
port-mirror	39
port-mirror disable	39
System Recovery	40

Copyright 2019 Rev r3a

BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 4 of 42

System Network Discovery	40
Configuration Database Factory Restore	41

This page is intentionally left blank

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 6 of 42

EDS-SSUSRGD-121319A

Introduction

UPS SolidSwitch is a powerful 240W 4+1 Port, outdoor PoE switch. It's designed to perform the functions of a midspan switch combined with an inclusive UPS and internal power source, to provide hours of emergency back-up. Power of up to 60W is available to all SolidSwitch POE ports.

Up to 240W Total Power Output

Up to 60W Power Output Per Port Up to 90-264VAC 50/60Hz Power Input Up to 1400Wh Standby Power

Innovative

UPS SolidSwitch is made possible by BTU's "Uninterruptible Power (over Ethernet) Supply"TM. A disruptive technology that ensures a reliable and consistent power connection through a switching mechanism to an internal battery source. The UPS SolidSwitch operates so efficiently, the transition is undetectable. In the creation of UPS SolidSwitch, we intended to add a new dimension to network infrastructure and were uncompromising in it's design and engineering. In doing so, we created a new standard to deliver what we believe is the most versatile, outdoor POE Switch, bringing UPS anywhere to ensure always on power everywhere.

Rugged

Housed in a die cast metal enclosure and built to be fully submersible. It's compact profile is made possible by the use of advanced PCB mounted 500W power supplies. The space, traditionally used in conventional switches to house large open framed AC/DC power supplies, makes way for a powerful 350Wh Li-Ion Power Pack. A specially designed "Extended Runtime Cover" is available to house up to 3 additional equally powerful packs, to increase emergency supply up to 1400Wh.

Smart

At initial power up, the SolidSwitch microprocessor takes inventory of the internal emergency power sources and estimates the energy levels in each of the available resources. This estimate of each resource will be updated when the known status is achieved and will be re-evaluated every 1 second, to sense changes and make adjustments to the available inventory.

Copyright 2019 Rev r3a

BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 7 of 42

The switching from an AC power source to the main backup battery pack is controlled by hardware, eliminating CPU latency and ensuring glitch free operation. Management of auxiliary power packs is handled by a microprocessor, which powers all ports until the battery resources are completely exhausted.

SolidSwitch provides the network capability to shut down selected devices or to program the orderly shutdown of devices, when resources have been depleted to predetermined levels. Battery maintenance is also programmed into the device to ensure PowerPak life is maximized.

Features

UPS SolidSwitch contains an all-inclusive, uniquely intuitive web based configuration and management tool, with timed restart capabilities to ensure permanent changes are effected unmistakably. Instant PoE monitoring and controls report exact per port power consumption, while simply enabling power recycling to edge devices on the fly. The sophisticated on board UPS and emergency backup is fully monitored twice per second to access real time mains power status, PowerPak charge status, capacity, and estimated emergency run time. Simplified management is provided through preconfigured VLAN tables and individual port membership.

Enterprise Authentication

Management authentication begins on the local device database and may be extended to remote authentication sources (AAA) by use of remote authentication extensions in the switch. This is simply facilitated through the configuration of the applicable settings for the extension type desired and then enabling that extension. Included extensions – TACACS and Radius.

Switch Feature Details

- VLAN table management across all ports is used for VLAN membership and VLAN trunking on the uplink.
- Permanent VLAN (PVLAN) for all ports is used for tagging ingress traffic.
- Renumbering of the management interface is made possible with attachment to 1 of 4094 active VLANS if so required.

Copyright 2019 Rev r3a

BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 8 of 42

• 802.1X port-by-port basis (wired ports)

Management Services

- SNMP V3 Support with SHA/MD5 AES/DES encryption options
- NTP with support for local time
- Radius
- TACACS

Integrated Switch Features

- Full VLAN and QoS support
- Fast Link-up option to significantly reduce link-up time
- Auto-negotiation and Auto-MDI / MDI-X support
- 1000BASE-T/100BASE-TX/10BASE-Te IEEE 802.3 (Wired ports)
- 1000BASE-T/1000BASE-X/1000BASE-SX/1000BASE-LX (SFP)
- MIB counters (34 per port) for fully compliant statistics gathering
- IEEE 802.1X access control (Port and MAC address based)
- IGMP v1/v2/v3 snooping for multicast packet filtering
- IPv6 multicast listener discovery (MLD) snooping
- IPv4/IPv6 QoS support, QoS / CoS packet prioritization
- 802.1p QoS packet classification with 4 priority queues
- Broadcast storm protection
- Four priority queues with dynamic packet mapping for:
 IEEE 802.1p
- IPv4 DIFFSERV
- IPv6 Traffic Class
- MAC filtering function to filter/forward unknown uni-cast, multicast and VLAN packets
- Jumbo packet support up to 9000 bytes (configurable)
- Port mirroring/monitoring/sniffing with ingress and/or egress traffic to any port

WEB INTERFACE

Solidswitch default IPv4 address is 10.4.1.80 for the first-time configuration, please configure your computer network interface to the following IPv4 parameters:

- IP Address within the 10.4.1.0/255.255.255.0 space.
 - Example: 10.4.1.10
- Network Mask 255.255.255.0

Once your machine is configured with the above temporary network parameters, with a Ethernet cable attached to one of the wired ports, the Web Interface can be reached using the following address

https://10.4.1.80/

The switch may also be configured by way of the command shell via ssh2 protocol.

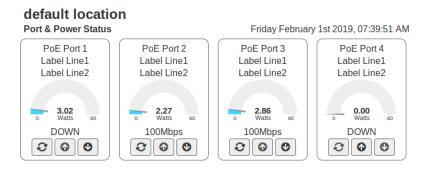
Default Access Credentials

The default username and password is admin/admin.

For security purposes the password should be changed immediately.

Web Interface Color Scheme

The default web interface color scheme may be changed under the settings \rightarrow system \rightarrow general section. A new color scheme maybe applied after saving by using the "apply" button.


Web Interface Color So	hemo	e
Dark		Apply Now
Save Settings		

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 10 of 42

UPS Command Post

The main web page is used to monitor unit status, PoE ports status, such as Ethernet Link connection speed, PoE power consumption, and total unit PoE power consumption. The statistics on this web page are updated automatically every few seconds.

Port status

- Individual port descriptions
- Status information, including power consumption
- Network link state
- Link speed

Each port also includes quick access controls, used easily power down, power up, or power-cycle the port.

Power Status

The units connection to MAINS power is displayed as *On-Line* or *Off-Line*. When Off-Line the "Storage Mode" function can be invoked here. The button to invoke the shutdown / storage mode is ONLY visible in the absence of MAINS power. Under normal operating conditions the feature is made unavailable.

Mains Power		
Current State	\rm A Off-Line	U Shutdown / Storage Mode
Time On Battery	(HH:MM:SS)	00:00:05

```
Copyright 2019
Rev r3a
```

BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 11 of 42

Battery Status

Battery status, for batteries 1 thru 4 capacity is illustrated with a bar graph, percentage, and service state. The service states are idle, charging, or in-service.

Battery	Capacity	% Capacity	State	
#1 Installed		100.00	ldle	
#2 Installed		100.00	ldle	
#3 Installed		100.00	ldle	
#4 Installed		100.00	ldle	

Copyright 2019 Rev r3a

Configuration Management

Configuration data is stored in two data sets, permanent, and cache. Permanent memory persists through a power off, where the cache is a copy of the permanent memory created at system startup. The difference between these configuration sets is determined by computing a checksum of the entire configuration data. Each data set checksum is displayed on the Configuration screen.

Configuration Summary	
Location	Checksum
NVM (Permanent)	0xE7A8EAFF
Config Cache	0xE7A8EAFF
Active (Running)	0xE7A8EAFF

Configuration cache becomes "the running configuration" when activated.

The data transfer from permanent to cache to activation is executed automatically on power up.

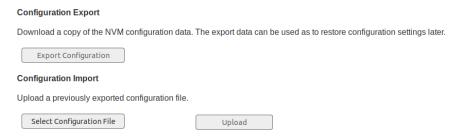
Configuration Management Conventions

After initial system power up, the cache may be reconfigured, activated, then optionally written to permanent memory. The configuration cache can be written direction to permanent memory skipping the activation step, however we advise the configuration be activated before the commit to permanent memory where possible, to avoid a system lockout condition. The system configuration tool will prompt to initiate an *automatic* restart when activating the configuration. This automatic restart will provide a stop gap with a clean restart from the last permanent memory configuration prior to the cache activation. In the event there is a error in the configuration, for example IP numbering or VLAN access etc., the automatic restart will trigger, and bring the switch back up with the last saved configuration, helping recover access to the switch. When using *automatic* restart, it is important to "commit changes" within 5 minutes of the activation to preserve the activated changes. The action of committing to permanent memory will cancel the pending restart. If you fail to commit to permanent

Copyright 2019 Rev r3a

BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 13 of 42

memory after activation, the automatic restart will trigger a system reboot after 5 minutes, consequently discarding changes in the configuration cache.


Configuration Actions

Each configuration action is preceded with a confirmation step. The activation is a two step confirmation, the second step providing the option for the *automatic* restart. You may use your best judgment as to when to deploy the *automatic* restart..

Con	figuration Actions				
>	Activate Changes) →	Commit Changes	Restore From NVM	ļ

Export / Import by HTTP

Configuration can be downloaded for archival purposes. If the physical asset should need to be replaced, the saved configuration can be uploaded to reproduce the exact configuration as before.

System Actions

Reboot action will invoke a internal operating system reboot.

Factory Default will stage the factory default database to be installed on the next system reboot.

Reboot

Factory Default

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 14 of 42

System Configuration

System Access Credentials

The system supports up to 32 unique users. This management screen allows you to simply add a user by username. The users password, and optional public key data can be configured by the entry in the user table row. Non administrative users can be inhibited by toggling the lockout feature.

Local User Access Table			
Users		Level	Lockout
admin Change Password	Set Public Key	Level 1	Disabled
Create a new user			
Create			

System Network Configuration

By default the Solidswitch is configured from the factory with the following address:

IP Address: 10.4.1.80

Along side the static address is a DHCP client service that will solicit a local DHCP server if one is reachable on the local network segment. The purpose of the DHCP client is to support internet connectivity for software updates and network time support. If you wish to statically number the device, you may simply disable the DHCP Client service. Once the DHCP client service is disabled, a gateway IP address field is then presented, which will be used to establish a default IP route.

DHCP Client Service Enabled

Dynamic Address				
DHCP Client	Enabled			

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 15 of 42

Static Addressing Example

Static Network Address					
Address	10.4.1.80				
Subnet Masl	x 255.255.255.0				
Gateway	10.4.1.252				
DNS Primary	8.8.8.8				
Secondary	4.2.2.1				

If the DHCP Client service is enabled, the switch may still be reached at the static address. The static address is configured as a sub interface at all times. Default routes supplied by the DHCP Server will supersede static route configuration when DHCP Client service is enabled and active.

System General Settings

Time and Date

This section provides a method to configure the local time zone information for the Solidswitch, and to configure the current date and time. The on-screen date and time should update once per second.

Local	Time Zone						
Zone	Central						
	Save Settings						
Currer	t Time and Date						
Friday	February 1st 2019, 0	7:44:03 AM					
Set Tir	ne and Date						
Month		Day	Year	Hour	Minute	Meridiem	Set
Feb	ruary	1	2019	7	43	AM	SET

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 16 of 42

Web Interface Color Scheme

The user may define either a light or dark color schema, and then make the change active.

Web Interface Idle Timeout

Sets the session idle time in seconds that are allowed to pass before invalidating authentications.

Log System Load Interval

This feature will log the system CPU load to the event buffer at a time interval specified. Zero seconds inhibits logging. Use care in selecting the time interval so not to over run the length of the event buffer flushing potentially useful information. 600-1500 seconds are ideal, with 600 seconds marking the event log only 144 times per 24 hour period.

Switch Configuration

Switch configuration is applied from the configuration cache on system startup. New switch configurations may be applied on demand at run time via the Configuration page.

Switch Global

Global switch settings

VLAN

Enable or disable: controls how the switch handles VLANs, if Global VLAN is enabled the PVLAN and VLAN configuration becomes active, if disabled, the PVLAN and VLAN table configuration is not activated. This setting essentially makes the switch VLAN aware, enabling 802.1q.

!Caution PVLAN functionality as well as VLAN Tables must be carefully configured prior to enabling the global VLAN feature in order to avoid a undesired network connectivity loss. Use the automatic restart feature if it all possible. If you are confident the configuration will work and a connectivity loss is expected the new configuration can

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 17 of 42

simply be committed to permanent memory.

Jumbo Frame Support

Enable or disable the passing of jumbo frames across the switch, jumbo frames may have a unit size of up to nine thousand bytes.

MTU / Maximum Transmission Unit

Configure the maximum Ethernet frame size that is allowed to traverse the switch. Frames larger than the specification will be dropped at the ingress port.

Switch Ports

Each individual port can be configured with two short lines (32 chars max.) of descriptive information. This label information propagates to the main Command Post screen and through the SNMP interface descriptions.

Switc	h Ports					
Port	Label Line 1	Label Line 2	Network	PoE	Authentication	
Port 1	Label Line1	Label Line2	⊖Enabled	∲ Enabled	n None	
Port 2	Label Line1	Label Line2		f Enabled	n None	
Port 3	Label Line1	Label Line2	⊖Enabled	∮ Enabled	n None	
Port 4	Label Line1	Label Line2	⊖Enabled	∳ Enabled	n None	
SFP P	ort					
Port 5	Label Line1	Label Line2	⊗Enabled			
Upd	ate Port Configuration					

Ports can can have their network and power functions turned permanently on or off from initial switch power on.

Copyright 2019 Rev r3a

BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 18 of 42

Switch VLAN

VLANs explained: VLAN is a way of creating multiple virtual switches inside one physical switch. Each LAN is assigned a Number. The number also has a optional priority level. The VLAN Number is used to control which packets are allowed to enter and exit each port on the switch. The switch also has a number of automatic functions for adding and stripping tags from packets entering and exiting specific ports, to ease the administration of VLANs.

Tag Insertion and Removal

Tag insertion is enabled on all ports when the VLAN feature is enabled. At the ingress port, untagged packets are tagged with the ingress port's default tag. The default tag is separately programmable for each port. The switch does not add tags to already tagged packets unless double tagging is enabled.

At the egress port, tagged packets will have their 802.1Q VLAN tags removed if un-tagging is enabled in the VLAN table entry. This feature is controlled on a per-port basis. Untagged packets will not be modified if 802.1Q is enabled.

Copyright 2019 Rev r3a

PVLAN

PVLAN (Permanent VLAN) Configuration determines how a ports ingress VLAN behavior is defined. The PVLAN function could be assimilated as a high way entrance ramp for packets not yet marked with a VLAN tag to receive a TAG (insertion) on entry, so that they are allowed to exit other ports on the switch configured with VLAN Table configuration.

Filter Action attribute controls how to handle packets as they arrive on the port of interest.

- Tagged
- UnTagged
- All Packets

Port	PVLAN #	Ingress Filter	Tag Action	Priority
Port 1	1	Disabled	Accept Untagged	0
Port 2	1	Disabled	Accept Untagged	0
Port 3	1	Disabled	Accept Untagged	0
Port 4	1	Disabled	Accept Untagged	0
SFP Port				
Port 5	1	Disabled	Accept Untagged	0
SFP Port				
Port 6	1	Disabled	Accept Untagged	0

Copyright 2019 Rev r3a

VLAN Tables

VLAN Table configuration controls which ports are members of a specific VLAN and what type of membership they have.

Memberships

- Tagged
 - Allow VLAN packets out of the interface tags left alone.
- UnTagged
 - Allow VLAN packets out of the interface, however the tags will be stripped

VLAN Add VLAN	Port 1	Port 2	Port 3	Port 4	Port 5 (SFP)	
	-N/A-	-N/A-	-N/A-	-N/A-	-N/A-	Add

System Services

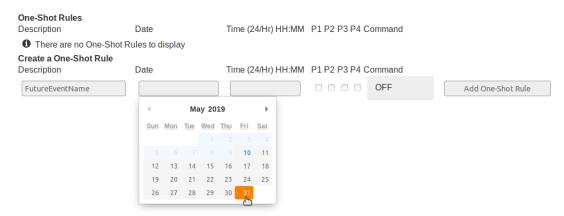
PoE Shutdown

In the event the system looses MAINS power, individual ports may be configured to power off when the remaining aggregated capacity reaches a specific level. Ports that are powered off by this mechanism will automatically be powered back on when the MAIN power returns.

Shutdov	wn Service		
Shutdo	wn Disabled	The service must be enabled for th	e rules below to be in effect
Shutdov	wn Configuration		
Port E	nable Disable	Shutdown when Less than % capacity	/ remaining
Port 1	Disabled		80 %
Port 2	Disabled		80 %
Port 3	Disabled		80 %
Port 4	Disabled		80 %
Updat	e Shutdown Settings		

PoE Schedule

The PoE schedule service must be enabled prior for any recurring or one-shot rule to be armed.


Recurring Rules

The PoE Schedule can be used to create recurring power operations. A single recurring operation may be configured to execute changes to one or more ports. Each rule can be configured to run on a specific day of the week, and at a specified time of day. Each rule can execute a single power-on, power-off, power-cycle function to the ports selected.

Scheduling	Ø Disabled		1 Friday Fe	bruary 1st 201	9, 07:58:32 A	м	
Update Sch	edule Settings						
Rule Listing Description There are	no rules to dist	Mo Tu We Th Fr play	Sa Su Hour	Minute	Meridiem	P1 P2 P3 P4 Command	
Create a Rule Description	e	MoTu WeTh Fr	Sa Su Hour	Minute	Meridiem	P1 P2 P3 P4 Command	
RuleName99	1		01	01	AM	OFF OFF	Create Rule

One-Shot Rules

The PoE One-Shot Schedule maybe used to execute one time power operation for a specified date and time in the future.

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608

Terminal Server

The terminal service may be used to bridge a local serial device to a remote network client or server. The terminal service includes several protocols, including raw, telnet, and telnet + RFC2217. When selecting RFC2217, remote configuration of the local serial parameters are facilitated. The configuration page provides access to set default serial parameters used on system startup, and TCP/IP port selection that the terminal service will listen for connections on.

Service	Ø Disabled	
Operation Mode	Raw	
Serial Port Param	eters	
Port Speed	9600	
Data bits	8	
Stop bits	1	
Parity	NONE	
Network Paramete	ers	
TCP/IP Port	2001	

MQTT Service

MQTT stands for MQ Telemetry Transport. It is a publish/subscribe, extremely simple and lightweight messaging protocol, designed for constrained devices and low-bandwidth, high-latency or unreliable networks. The design principles are to minimize network bandwidth and device resource requirements, while also attempting to ensure reliability and some degree of assurance of delivery. These principles also turn out to make the protocol ideal of the emerging "machine-to-machine" (M2M) or "Internet of Things" world of connected devices, and for mobile applications where bandwidth and battery power are at a premium.

Solidswitch is capable of publishing in JSON format; the data used on the diagnostics screen every 60 seconds to a MQTT broker. Solidswitch also publishes topics that can be published on to provide remote control over PoE functionality. This remote control capability can be used to power-on, power-off, or power-cycle to any PoE port.

The embedded MQTT client can be configured to connect to a user defined broker securely. Information on the topics, how to subscribe, or publish to them is available [TD.403].

Client Configuration	
MQTT Server (Broker)	10.4.1.70
MQTT Port	1883
Username	MQTTL3SSUser
Password	MQTTLSecret
Fallback Topic	BTU_1B3586
Group Topic	solidswitch
Торіс	solidswitch
Full Topic	cmnd/solidswitch
Update MQTT Settin	gs

Example MQTT Client Configuration

For advanced users, topics can also be gleaned with relative ease by observation of broker logs.

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 25 of 42

SNMP Service

Simple network monitoring service (SNMP) is a protocol broadly used in the networking industry to monitor the health and function of networking devices. Solidswitch supports two version of the SNMP protocol version 2c (UN-encrypted) and the later version 3 (encrypted).

The SNMP Service configuration screen provides access SNMP system variables, as well as service configuration parameters regarding connectivity, protocol, and credentials.

SNMP Service

Simple Network Manag	jement	Protocol		
SNMP Service	Disabled			
SNMP Mode	SNM	IP v3		
Sys Contact		admin@somedomain.com		
Sys Description		Solidswitch 1400		
Sys Name		L3SS		
Sys Location		default location		
Username		snmpuser		
Encryption Scheme		MD5/DES -		
Authentication Passwo	rd	authpass		
Encryption Password		cryptpass		

Save Settings

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 26 of 42

EDS-SSUSRGD-121319A

NTP Service

The Network Time Protocol (**NTP**) is a networking protocol for clock synchronization between computer systems over packet-switched, variable-latency data networks. By default this service is enabled on Solidswitch, and is configured to use public NTP servers.

Service	
NTP Peer 1	pool.ntp.org
NTP Peer 2	pool.ntp.org
Update	NTP Settings

Copyright 2019 Rev r3a

BTU Research LLC 3030 Post Oak Blvd., Suite 608

HTTP Service

The HTTP server can be configured to use alternative port numbers to accommodate various network configurations. Alternative port numbers must be greater than 1024 and less than 65535 to be valid. A change in port numbers requires the current configuration to be saved, and a system reload prior to the new port numbers to take effect.

Server port cor	nfiguration	
HTTP PORT	80	
HTTPS PORT	443	(e.g. 8443)
Save Se	ttings	

Copyright 2019 Rev r3a

Rsyslog Service

Rsyslog service may be enabled to transmit system events in syslog protocol (RFC-3164) format to a remote server. The messages are transmitted on UDP port 514.

Example Rsyslog configuration screen:

RSYSLOG Service	Ø Disabled	
Remote Log Host	10.4.1.70	
Save Setting	5	

Authentication Extensions

RADIUS Service

RADIUS authentication extension service configuration page

The local user authentication database can be extended to authorize users based on remote authentication services. The RADIUS service must be enabled and configured prior to selecting the RADIUS *authentication extension* from the System Access Credentials page.

Radius Service	Ø Disabled			
Radius Server	10.4.1.70			
Server Secret	testing123			
Response Timeout	3 Seconds			
Save Settings				

TACACS Service

TACACS authentication extension service configuration page.

The local user authentication database can be extended to authorize users from a remote TACACS service. The TACACS service must be enabled and configured prior to selecting the TACACS *authentication extension* from the System Access Credentials page.

TACACS Service	⊘ Disabled →
Server Address	10.4.1.70
Server Key	testing123
Save Settir	ngs

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 30 of 42

LLDP Service

Solidswitch has a internal LLDP daemon that is capable of advertising the local chassis description through it's network connected links. The service must be enabled for use as it is disabled by default. Once the service is enabled the the system must be reloaded prior to service startup. When the service is running LLDP messages received on various ports will be digested and information learned displayed on the LLDP information page. LLDP information is also available through the CLI.

Copyright 2019 Rev r3a

Connection Monitor Service

The connection monitor service may be used to cycle power to a PoE connected device so long as the PoE device is on the same network numbering schema as the switch administration service address.

The Host Address of the PoE device and Fail Count are user defined.

Port	Monitoring State	Host Address	Fail Count	Status	Last Activity Timestamp
Port 1	⊘ Disabled		5	Not-Monitored	N/A
Port 2	Ø Disabled		5	Not-Monitored	N/A
Port 3	Ø Disabled		5	Not-Monitored	N/A
Port 4	⊘ Disabled		5	Not-Monitored	N/A

Operational Description

The Connection Monitor service will transmit a PING request to the HOST address every sixty seconds, and reset power if the address becomes unresponsive. The power for the port will be switched "Off", and then "On" after the number of failed ICMP responses reach the user defined fail count.

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 32 of 42

Network Ports

Switch \rightarrow Network Ports \rightarrow Port 0..10 Information Page

Each network port has a information page that describes port related networking information such as line state, transmit and receive counters, symbol errors, CRC errors, discards, and pause frames.

Dynamic ALU entries specific to the port.

Port specific STP information such as role, state, path costs and more.

Spanning Tree Protocol

Spanning tree protocol engine is enable by default. The spanning tree parameters for each port on the switch may be tuned for user defined specifications. Settings \rightarrow Switch \rightarrow Ports page contains per port user parameters such as state, path cost, and priority. A information summary about timing and topology changes maybe learned from the STP Information page on the web interface as well as the CLI.

Global STP Settings Configuration

Setting Name	Default Value	
Hello Time	2	
Max Age	20	
Forward Delay	6	
TX Hold	15	
Priority	0x8000 / 32768	

Copyright 2019 Rev r3a

Dynamic Address Lookup Table

The Address Lookup Table explains what LAN stations are in reach through the local switch fabric and which ports are associated with learned addresses.

The web interface and CLI have a reset function that may be used to flush the table.

Port Mirroring

A diagnostic mechanism that enables a user to copy all data traffic transmitted or received on one switch port to a second switch port. This diagnostic tool maybe used in conjunction with specialized software to analyze data traffic content or statistics gathering for troubleshooting, or security purposes.

To enable the mirror function, a source port and destination port, must be selected.

The mirror function will automatically be disabled on the next reload if not disabled by the user before hand.

Port mirror function is also configurable using the CLI.

PING Utility

The ping utility enables the user to verify host access from the management interface of the solidswitch. ICMP message round trip time can be used to understand general performance metrics related to a specific host. Host, Message Count, and TTL are user defined inputs to the function. Output will displayed in near real time to the output pane below.

A ping utility is also available in the CLI.

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 34 of 42

Diagnostics

The diagnostics screen displays low level system information about the Solidswitch. The screen contains product identification, serial number, MAC address, power status, battery equipment, PoE power usage, and many other operational metrics.

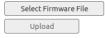
Product Serial Number 0A80C204341004527C93A000A000000 Port 1 MAC Address 00:54:00:1B:25:BC PD Class Class 4 Firmware Release 20190127 Channel 1 3.02 Channel 2 0.00	
Firmware Release 20190127 Channel 2 0.00	
	al 3.02
System Runtime (HHMMSS) 64:24:19 Sub Total	
System Loads 0.88 0.87 0.85 Port 2	
Current Timestamp Friday February 1st 2019, 07:47:17 AM PD Class Class 4	
Power Output Limit 150.0W Channel 1 1.30 Channel 2 0.99	9
Sub Tota	
Power Port 3	1 2.20
A/C 1 PD Class Class 0	
Internal Power Channel 2 .89 Channel 2 .00	0
+24 PSU 30.18	
+24 ORED 30.15 Sub Total	1 2.89
+3.3 3.29 Port 4	
+54 A 53.87 PD Class Unknown	_
+24 B 53.81 Channel 1 0.00 Channel 2 0.00	
Sub Total	
Batteries Installed Total PoE Consumption	ı 8.18
Installed Charging V I aBCap dBCap	
Battery 1 0 0 12.18 -43.11 0.00 0.00 PoE PSE C Die Temp	
Battery 2 0 0 5.02 -59.76 0.00 0.00 TPS 1 154.76 TPS 2 149.	.72
Battery 3 0 0 4.61 -32.01 0.00 0.00 Init Passed Init Pass	sed
Battery 4 0 0 4.50 -48.66 0.00 0.00	

Event Buffer

The event buffer is a facility that stores events of interest to NVM (non volatile memory). The system is capable of tracking the last 1024 entries on a first-in last-out convention. Recorded events may persist between reload and between software upgrades. The event log may be cleared using a reset function available in the web interface and CLI.

Software Updates

The UPS Solidswitch is capable of firmware upgrades. The software section from the settings menu displays several paths for upgrading the firmware.


The first method is automatic update. Automatic update requires that the switch IP Address, Gateway, and DNS settings are configured for internet access. This can also be accomplished using the Embedded DHCP Client. The automatic update check interval is configured to query every 24 hours.

Software Upgrade Actions
Check to see if a remote software update is available (requires internet connectivity)
Check & Install

The second method is to upload the firmware upgrade to the switch using the firmware upload function. This option could be used in a situation where the Solidswitch is not connected to the public internet.

Firmware Upload

Select the firmware upgrade file the click "Upload" to start the upgrade process.

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 36 of 42

SSH Command Line Interface

Solidswitch includes a line interface configuration shell accessible over the ssh2 protocol.

The majority of network configuration of the SolidSwitch can be accomplished through this configuration shell if desired. Some configuration of ancillary services, PoE scheduling for example, must be configured through the web interface. Configuration of these ancillary services through the configuration shell may be done in a future firmware release.

The configuration shell is a rather intuitive interface, simply typing a question mark followed by an "Enter Key" will display available commands, their respective descriptions, and accepted arguments on the session terminal.

SSH Authentication

The SSH2 command shell supports both password and public/private key authentication. In order to use the public/private key authentication, the public portion of the key should be transferred to the Solidswitch through the access credentials section of the web tool or by using *sshconfig* sub feature of the command shell.

SSH Public Key Generation

The following command can be used on most Linux distributions to generate a public/private RSA key.

ssh-keygen -t rsa

The output of the ssh-keygen command should emit something to the effect of:

Your public key has been saved in ... /.ssh/id_rsa.pub

The contents of the *id_rsa.pub* file is the public part of the generated RSA key.

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 37 of 42

Configuration Output

The show configuration command can be used to dump or display the entire configuration of the switch to the session terminal window.

Command example:

#show configuration<CR>

The configuration of the switch is articulated through a mechanism that formats the configuration in such a way so that it may be re-applied back through the configuration shell if need be.

Configuration Input

#configure terminal<CR>

Then cut and paste the configuration text in whole or in part into the session terminal.

Configuration Management

Just like the web interface, activation and commit of the running configuration "configuration cache" can be accomplished with the following command examples

Automatic Reload In 5 Minutes:

#reload in 5<CR>

Activate the running configuration:

#activate <CR>

Write the configuration cache to permanent memory:

#write memory<CR>

Cancel the pending reload:

#reload cancel<CR>

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 38 of 42

Configuration Export / Import

Using special remote filename extensions the system configuration database may be exported and staged for importing using the SFTP function of the SSH2 protocol.

Command Examples:

Configuration Export

<pre>\$ scp admin@10.4.1.80:/dbcfgsave.dat ./dbcfgsave.dat</pre>				
admin@10.4.1.80's password:				
dbcfgsave.dat	100%	14KB	2.3MB/s	00:00

Configuration Import

<pre>\$ scp ./dbcfgsave.dat admin@10.4.1.80:/dbcfgsave.dat</pre>				
admin@10.4.1.80's password:				
dbcfgsave.dat	100%	14KB	2.4MB/s	00:00

After uploading the configuration database, The imported data is staged for installation on the next restart. A system reload must be issued to proceed.

System Software Upgrade

\$ scp /tftpboot/ssfwupgrade.bin admin@10.4.1.80:/ssfwupgrade.bin
admin@10.4.1.80's password:
ssfwupgrade.bin 100% 19MB 3.9MB/s 00:04

After uploading system firmware, The upgrade process automatically begins. This event would be recorded in the system event buffer.

[12/09/2019 17:54:27.873] (5) software upgrade started via scp

If the software upload is valid, and the uploaded version is newer than the currently installed version, the system will automatically reload, and the new software will be installed.

BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 39 of 42

SSH Command Shell continued.

tftp-config put

Export and transmit configuration database to remote TFTP server.

tftp-config put HOST PORT PATH<CR>

tftp-config get

Receive configuration database from remote TFTP server, stage for import on reload.

tftp-config get HOST PORT PATH<CR>

tftp-upgrade

Download firmware upgrade from remote TFTP server, initiate firmware upgrade process.

tftp-upgrade HOST PORT PATH<CR>

telemetry

Display system telemetry on the terminal Telemetry [interval in seconds]<CR>

port-mirror

Enable port mirror function port-mirror src PORT dst PORT<CR>

port-mirror disable

Disable port mirror function

port-mirror disable<CR>

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 40 of 42

System Recovery

If the system IP address information becomes lost you may recover the information from a power – on event. After the system power-on event, the SolidSwitch will transmit a UDP message to the local broadcast address on port 514. The contents of the message will describe the current interface numbering schema.

System Network Discovery

The following is an example of capturing the broadcast message using the *ngrep* tool. The message may also be captured with Wireshark packet analyzer. The broadcast message is transmitted approximately 60 seconds after a power on.

```
# sudo ngrep -W byline port 514
interface: enp3s0 (10.4.1.0/255.255.255.0)
filter: ( port 514 ) and ((ip || ip6) || (vlan & (ip || ip6)))
#
U 10.4.1.186:55016 -> 255.255.255.255.514 #1
<15>Dynamic Interface:
inet addr:10.4.1.186 Bcast:10.4.1.255 Mask:255.255.255.0
inet6 addr: fe80::254:ff:fe00:1/64 Scope:Link
Static Interface:
inet addr:10.4.1.80 Bcast:10.4.1.255 Mask:255.255.255.0
```

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 41 of 42

Configuration Database Factory Restore

The SolidSwitch also has a mechanism to reset the internal configuration database back to original factory default settings by way of the micro SD card slot.

To setup a micro SD card perform the following:

- 1. Format the card with a single fat32 partition.
- 2. Create a text file the root directory of the card named "commands.txt"
- 3. The contents of "commands.txt" is a single line containing exactly: "system:default"
- 4. Power down, then Power up the system, wait 60 seconds, power down.
- 5. Pull the micro SD card, check the root file system for a new file "command_result.txt"

command_result.txt contents:

Fri Feb 8 20:32:40 UTC 2019 command: default default dataset init cardcommands done

On the next power-on the system will adopt factory default configuration settings.

Copyright 2019 Rev r3a BTU Research LLC 3030 Post Oak Blvd., Suite 608 Page 42 of 42